| |||||||||
|
Логические законы и правила преобразования логических выраженийЗаконы логики отражают наиболее важные закономерности логического мышления. В алгебре высказываний законы логики записываются в виде формул, которые позволяют проводить эквивалентные преобразования логических выражений.Закон тождества. Всякое высказывание тождественно самому себе: А = А Закон непротиворечия. Высказывание не может быть одновременно истинным и ложным. Если высказывание А истинно, то его отрицание не А должно быть ложным. Следовательно, логическое произведение высказывания и его отрицания должно быть ложно: А&!А = 0 Закон исключенного третьего. Высказывание может быть либо истинным, либо ложным, третьего не дано. Это означает, что результат логического сложения высказывания и его отрицания всегда принимает значение "истина" Аv!А = 1 Закон двойного отрицания. Если дважды отрицать некоторое высказывание, то в результате мы получим исходное высказывание: !!А = А Законы де Моргана. !(А v В) = !А &!В !(А & В) = !А v !B Важное значение для выполнения преобразований логических выражений имеют законы алгебраических преобразований. Многие из них имеют аналоги в обычной алгебре.Закон коммутативности. В обычной алгебре слагаемые и множители можно менять местами. В алгебре высказываний можно менять местами логические переменные при операциях логического умножения и логического сложения: Логическое умножение Логическое сложение А &В =В &А Аv В =А vВ
Закон ассоциативности. Если в логическом выражении используются только операция логического умножения или только операция логического сложения, то можно пренебрегать скобками или произвольно их расставлять:
|