| ||||
|
Алгебра логикиАлгебра высказываний была разработана для того, чтобы можно было определять истинность или ложность составных высказываний, не вникая в их содержание.В алгебре высказываний суждениям (простым высказываниям) ставятся в соответствие логические переменные, обозначаемые прописными буквами латинского алфавита. Рассмотрим два простых высказывания: А = «Два умножить на два равно четырем». В = «Два умножить на два равно пяти». Высказывания, как уже говорилось ранее, могут быть истинными или ложными. Истинному высказыванию соответствует значение логической переменной 1, а ложному — значение 0. В нашем случае первое высказывание истинно (А = 1), а второе ложно (В = 0). В алгебре высказываний высказывания обозначаются именами логических переменных, которые могут принимать лишь два значения: «истина» (1) и «ложь» (0). В алгебре высказываний над высказываниями можно производить определенные логические операции, в результате которых получаются новые, составные высказывания. Для образования новых высказываний наиболее часто используются базовые логические операции, выражаемые с помощью логических связок «и», «или», «не». Существует несколько возможностей обозначения логических связок. Например операцию "и" можно обозначить при помощи следующих символов "&", "^", "¦", операцию "или" обозначают "v", "¦" , операцию "не" обозначают "!", "A" , "¬A". Мы будем использовать следующие обозначения: операция "и" - "&", операция "или" - "v", операция "не" - "!". |